

9TH INTERNATIONAL GAS TURBINE CONFERENCE

TECHNOLOGY DEVELOPMENT NEEDS & REQUIREMENTS FOR OIL & GAS OPERATORS TODAY AND IN THE FUTURE

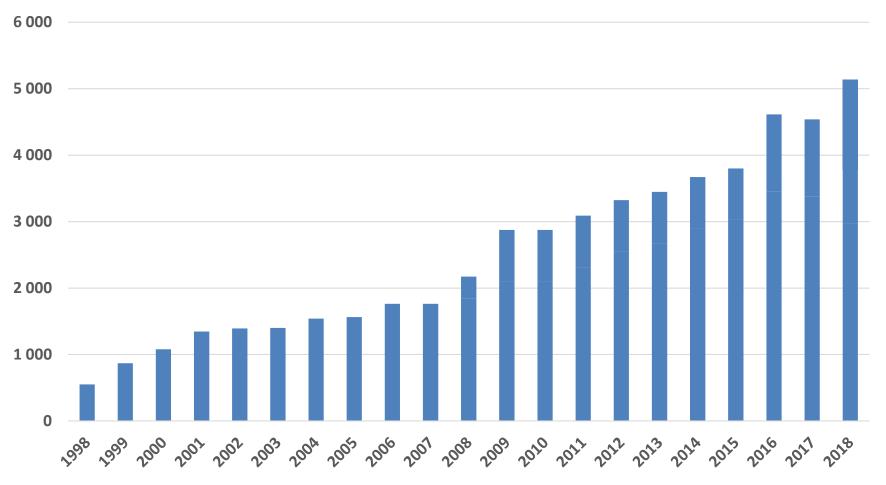
Bernard QUOIX

TOTAL Senior Fellow

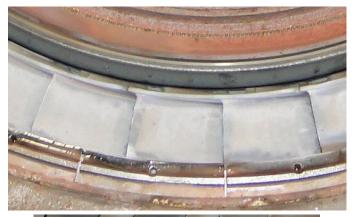
Head of Rotating Machinery – TOTAL E&P

President of ETN Global

INCREASED OPERATIONAL COMPLEXITY IN THE OIL & GAS INDUSTRY


- Increasing demand for Energy
- Climate change and international climate agreements
- Remoteness of sites and harsh operating conditions
- Water depth
- Ultra-high gas reinjection pressure
- More installed power requirement

Reduce OPEX and our emission footprint without compromising safety


TOTAL EP TURBOMACHINERY FLEET CUMULATED POWER (MW) VERSUS TIME

5,136 MW Cumulated Power for TOTAL Turbomachinery fleet

CREEP EXAMPLE

Environment	Tropical
Offshore/onshore	Offshore
Fuel gas quality	Within OEM standards
Operating regime	Continuous operation
Running hours	TBO + 10%
Starts between	215
overhauls	
Driven Load	Compressor at process
	capacity limit
Driver Load	~ 80%

Lifetime extension of 30%

Parameters	Operating average value	Base load engine test value
T5 temperature	710°C	776°C
GG speed	96%	99.67%
Starts	215	

CUMULATIVE DAMAGE EXAMPLE

Environment	Tropical
Offshore/onshore	Offshore
Fuel gas quality	Within OEM standards
Operating regime	Operational redundancy
Running hours	TBO
Starts between overhauls	287
Driven Load	Electric generator at
	Partial load
Driver Load	~65%

Parameter	Operating average value	Base load engine test value
T5 temperature	750°C	852°C
GG speed	9 550 rpm	9 660 rpm
Starts	287	-

- Required start frequency
 < 1/200 running hours
- Actual start frequency= 1/87 running hours

Running conditions versus start frequency => double the TBO

FATIGUE EXAMPLE

Running hours	24506
Starts	935
Driven Load	Full load
Driver Load	~95% in average

- Restart every 26 hours
- Impact of each start in addition to the cumulating running hours
- Engine should have a reduced Time Between Overhaul (TBO) of 43%

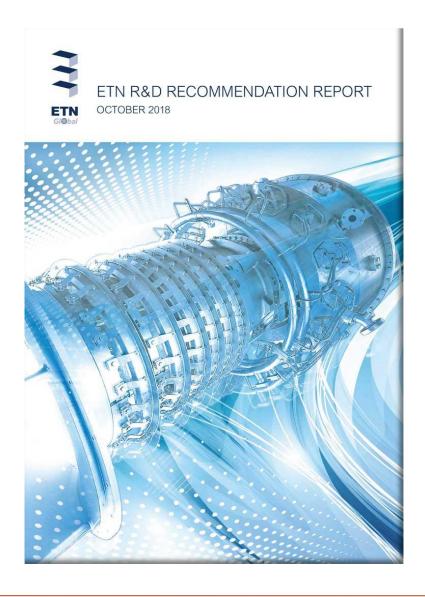
Operational TBO as per standard OEM cycle

HOT CORROSION

Environment	Subtropical
Offshore/onshore	Offshore
Fuel gas quality	Out of OEM standards
	1,4% of H2S

REDUCE CAPEX & OPEX OF ROTATING MACHINES IN O&G INDUSTRY

- Optimization of the rotating machinery architecture
- Preventive, Conditional Based Maintenance
- Tracking and analyzing each breakdown
- Digital Technology for Remote Follow-up


Need to take cooperation to a new level

R&D INTERESTS AND NEEDS

- Development of high power gas turbines for LNG applications with free Power Turbine
- Development of Mini Modular LNG trains
- Efficiency increase, reduction of methane leakage, CO2 and NOX emissions
- Hot Corrosion Materials Resistance
- High Speed and Pressure Ratio Integrated Compressors
- Turbomachinery Modularization
- Close collaboration with Suppliers is required

ETN R&D RECOMMENDATION REPORT

THANK YOU FOR YOUR KIND ATTENTION

DISCLAIMER AND COPYRIGHT RESERVATION

The TOTAL GROUP is defined as TOTAL S.A. and its affiliates and shall include the party making the presentation.

Disclaimer

This presentation may include forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 with respect to the financial condition, results of operations, business, strategy and plans of Total that are subject to risk factors and uncertainties caused by changes in, without limitation, technological development and innovation, supply sources, legal framework, market conditions, political or economic events.

Total does not assume any obligation to update publicly any forward-looking statement, whether as a result of new information, future events or otherwise. Further information on factors which could affect the company's financial results is provided in documents filed by the Group with the French *Autorité des Marchés Financiers* and the US Securities and Exchange Commission.

Accordingly, no reliance may be placed on the accuracy or correctness of any such statements.

Copyright

All rights are reserved and all material in this presentation may not be reproduced without the express written permission of the Total Group.

